Welcome 2017/18 New Surgery Residents
Continued from page 7

CARDIOTHORACIC / PLASTIC / UROLOGY / VASCULAR SURGERY RESIDENTS

Alison Bae, MD
Plastic Surgery R1
Edward Chang, MD
Urology R1
Sean Fisher, MD
Plastic Surgery R1
Jake Hemingway, MD
Vascular Surgery R1
Melissa Herrin, MD
CT Surgery R1
Catalina Hwang, MD
Urology R1
Jenny Yu, MD
Plastic Surgery R1
Lauren Poniatowski, MD
Urology R1
Benjamin Massenberg, MD
Plastic Surgery R1

2017/18 Research Residents

John Monu, MD, 2017–2019
Dr. Monu is a trainee in the NIDDK–funded T32 fellowship in the Gastrointestinal Surgical Outcomes Research at the Surgical Outcomes Research Center (SORCE) under the tutelage of Dr. David Flum, Professor in the Division of General Surgery. His research will span a variety of clinical areas, however, he will primarily be focusing on diseases in the field of thoracic surgery. With guidance from Dr. Farhood Farjah, Associate Professor in the Division of Cardiothoracic Surgery, Dr. Monu plans to move forward with research on lung cancer and the implementation of screening for this disease. He will concurrently be pursuing a Masters of Public Health at the University of Washington to supplement his knowledge on research methodology. He ultimately intends to complete a fellowship in cardiothoracic surgery.

Veeshal Patel, MD, MBA, 2017–2019
Dr. Patel will spend two years as a research fellow at the University of California, San Francisco, in the Department of Surgery and Surgical Innovations Program under the mentorship of Dr. Michael Harrison, Professor Emeritus of Surgery, Dr. Hanmin Lee, Professor and Chief of Pediatric Surgery, and Dr. Shuvo Roy, Professor of Bioengineering. His research is funded by a National Institute of Biomedical Imaging and Bioengineering (NIBIB) R25 grant and an NIH SBIR grant. As a Surgical Innovations Fellow, Dr. Patel will focus on medical device development and be involved in a number of bioengineering and translational medicine projects including the Magnetic Duodenal–Ileal Bypass (DIPASS) clinical trial. The goal is to demonstrate that a partial proximal small bowel diversion will have similar metabolic benefits as bariatric surgery on Type 2 Diabetes and metabolic syndrome, while creating a novel, less invasive surgical intervention. He is additionally working on a number of ongoing projects further developing technology for a magnetic bowel anastomosis device in addition to a magnetic implanted device for the treatment of obstructive sleep apnea, novel approaches to seal the amniotic membrane, and less invasive therapies for the treatment of pectus excavatum. Dr. Patel plans pursue a career in academic trauma surgery and critical care at safety–net hospitals, while continuing ongoing work in medical device development and translational research.

(continued on page 9)
Dr. Sullivan is a Cancer Research Institute/Fibrolamellar Cancer Foundation Fellow working with Drs. Venu Pillarisetty, Associate Professor in the Division of General Surgery, Raymond Yeung, Professor in the Division of General Surgery and Kimberly Riehle, Associate Professor in the Division of Pediatric General Surgery. Fibrolamellar hepatocellular carcinoma (FL–HCC) is a form of liver cancer that is rare but occurs in otherwise healthy adolescents and young adults without underlying liver disease or cirrhosis. Surgical resection is the mainstay of treatment, and no systemic therapy or chemotherapeutic agents have proven effective; therefore, patients with unresectable or metastatic disease have a poor prognosis. Recently, a deletion on chromosome 19 that results in a novel fusion protein called DNAJB1–PRKACA was discovered and has been shown to be unique to FL–HCC. Dr. Sullivan and team will be working toward new treatments for FL–HCC by two mechanisms. First, to determine the potential for immunotherapy in FL–HCC, they will investigate the immune microenvironment of tumors using multiplex immunohistochemistry, which allows for analysis of multiple types of immune cells and their relationship with each other and tumor cells. Given that the fusion protein DNAJB1–PRKACA is located in the cytoplasm of tumor cells, it may be a target for T cells, and they plan to characterize the intra–tumoral T cells using T cell receptor deep sequencing along with isolation and culture of tumor infiltrating lymphocytes (TIL). In addition, the group plans to continue to elucidate the mechanism by which DNAJB1–PRKACA promotes tumorigenesis in the search for additional therapeutic targets.

As a Seattle native, she is happy to be practicing and giving back to the community. Dr. Chen enjoys spending her free time with her family, crafting, and other creative projects.